skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Katzbaer, Rowan R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 10, 2025
  2. Oxides of p-block metals (e.g., indium oxide) and semimetals (e.g., antimony oxide) are of broad practical interest as transparent conductors and light absorbers for solar photoconversion due to the tunability of their electronic conductivity and optical absorption. Comparatively, these oxides have found limited applications in solar-to-hydrogen photocatalysis primarily due to their high electronegativity, which impedes electron transfer for converting protons into molecular hydrogen. We have shown recently that inserting s-block metal cations into p-block oxides is effective at lowering electronegativities while affording further control of band gaps. Here, we explain the origins of this dual tunability by demonstrating the mediator role of s-block metal cations in modulating orbital hybridization while not contributing to frontier electronic states. From this result, we carry out a comprehensive computational study of 109 ternary oxides of s- and p-block metal elements as candidate photocatalysts for solar hydrogen generation. We downselect the most desirable materials using band gaps and band edges obtained from Hubbard-corrected density-functional theory with Hubbard parameters computed entirely from first principles, evaluate the stability of these oxides in aqueous conditions, and characterize experimentally four of the remaining materials, synthesized with high phase uniformity, to assess the accuracy of computational predictions. We thus propose seven oxide semiconductors, including CsIn3O5, Sr2In2O5, and KSbO2 which, to the extent of our literature review, have not been previously considered as water-splitting photocatalysts. 
    more » « less
  3. Herein, we report an effective strategy to maximize the antimicrobial activity of CuWO 4 /CuS hybrid composites, prepared by simply mixing CuWO 4 and CuS nanopowders with varying weight ratios in phosphate buffered saline solution by ultrasound. The tested bacteria included Gram negative (G − ) pathogenic bacteria Salmonella typhi , Gram positive (G + ) pathogenic bacteria Staphylococcus aureus , and G + bacteria Bacillus subtilis . The as-prepared composites exhibited much enhanced antibacterial efficiency compared with individual CuWO 4 and CuS nanopowders under white light irradiation. The checkerboard array analysis revealed that the combination of 8 μg mL −1 CuWO 4 and 2 μg mL −1 CuS was the most efficient and generated the optimal synergistic effect, showing a complete killing effect on all the tested bacteria from 3 strains with ∼5.8 log cell reduction. The significantly enhanced catalytic efficiency can be ascribed to the formation of a type-II heterojunction between CuWO 4 and CuS, which can effectively improve the charge separation efficiency and increase the light absorption. Moreover, the hybrid composites prepared by ultrasound-assisted physical mixing can effectively increase the interface area, which greatly facilitates the charge mobility and transfer in the interfaces between CuWO 4 and CuS. This study offers new insights into the integration of different semiconductors to optimize their synergistic effect on antimicrobial activities for water disinfection. 
    more » « less